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Abstract 
 

The goal of Shelter-In-Place (SIP) is to reduce human exposure to chemical, 

biological, radiological, and nuclear (CBRN) agents in the event of an accidental or 

intentional airborne release into the outdoor environment.  The Air Force 

Bioenvironmental Engineering (BE) career field is responsible for providing hazard 

identification, evaluation, and control capabilities as well as executing health risk 

assessments to recommend appropriate courses of action to commanders pre-, trans-, and 

post-incident. Specifically, BE is responsible for providing sampling, identification, and 

quantification input to hazard prediction models and supporting evacuation plan 

development to provide risk-based control recommendations.  This also includes 

providing exposure and contamination control recommendations for sheltered 

populations.   A Gaussian plume model combined with indoor box model was used to test 

the consequences associated with the delay of implementing SIP procedures.  It is 

imperative that emergency planners pre-plan the installation SIP protocol for likely 

scenarios identified during the various vulnerability surveys conducted for both on- and 

off-installation.   The decision to shelter-in-place must be made immediately in order to 

reduce the exposure and depending on scenario, a delay greater than one minute can 

significantly increase the exposure resulting in additional casualties presenting at the 

local medical treatment facility.  
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SHELTER-IN-PLACE: INDOOR EXPOSURE ASSESSMENT DURING AN 

AIRBORNE CHEMICAL, BIOLOGICAL, RADIOLOGICAL, AND NUCLEAR 

(CBRN) EVENT 

 

I. Introduction 

 

Background 
 

The goal of Shelter-In-Place (SIP) is to reduce human exposure to chemical, 

biological, radiological, and nuclear (CBRN) agents in the event of an accidental or 

intentional airborne release into the outdoor environment. In the event of an airborne 

release of a CBRN agent, the U.S. Department of Homeland Security (DHS) 

recommends expedient SIP when evacuation is not immediately possible. [1]  Expedient 

SIP is the process used to seal a chosen room to create a temporary barrier between 

individuals and the contaminated air outside.  The process involves using plastic and duct 

tape to help seal windows, doors, and air vents to reduce air infiltration into room.  SIP 

also involves turning off fans, forced air conditioning and heating systems. 

Recent studies have shown that sheltering-in-place in residential districts can 

provide adequate protection against hazardous material during short-term accidental and 

intentional releases [2] [3].  But, it may not always be possible to properly SIP on an Air 

Force installation, which consists of industrial, administrative, and residential districts.  

In the event of an accidental or intentional airborne release, Air Force personnel may 
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receive excessive exposures due to inadequate implementation of sheltering or improper 

evacuation resulting in increased expected casualty rates. 

The Air Force Bioenvironmental Engineering (BE) career field is responsible for 

providing hazard identification, evaluation, and control capabilities as well as executing 

health risk assessments to recommend appropriate courses of action to commanders pre-, 

trans-, and post-incident. [4] Specifically, BE is responsible for providing sampling, 

identification, and quantification input to hazard prediction models and supporting 

evacuation plan development to provide risk-based control recommendations.  This also 

includes providing exposure and contamination control recommendations for sheltered 

populations. [5] There are a few shortfalls associated with execution of this capability, 

but the impact severity is extensive to major because failure to control hazards may lead 

to unacceptable potential for impact to personnel health. [6]   

SIP is a relevant topic, because recent history has shown the need for sheltering-

in-place due to accidental release of hazardous materials in residential districts. On 11 

April 2003, an explosion at the D.D. Williamson & Co., Inc plant in Louisville, 

Kentucky, where food-grade caramel was manufactured, damaged the western end of the 

facility and released 26,000 pounds of ammonia killing one worker and forcing the 

evacuation of 26 residents with 1,500 people required to SIP. [7] Similarly, On 28 June 

2004, a Union Pacific Railroad train collided with another train in San Antonio, Texas, 

resulting in approximately 9,400 gallons of liquefied chlorine being released.  Three 

fatalities and sixty-six casualties resulted from the accident. [8] 
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 With society’s dependence on the chemical industry to provide goods, history has 

shown that both intentional and accidental releases happen.  The needs for tools that 

allow incident commanders predict consequences associated with evacuation and 

sheltering decisions.    

Problem Statement 

Thesis Topic 

This research attempts to evaluate the effectiveness of SIP on an Air Force 

installation by looking at the feasibility of combining outdoor dispersion models with 

modified industrial hygiene exposure models to estimate indoor airborne exposures to 

test the consequences associated with the delay of implementing SIP procedures.  

Hypothesis 

This research hopes to show that the models developed for this thesis are 

consistent with those produced by commercial modeling software, such as in ALOHA 

dispersion software by the U.S. EPA.   The null hypothesis is that the thesis model peak 

concentration is not within 15% of the results reported by ALOHA.   A comparison of the 

time at which the concentrations peaks between the thesis model and ALOHA is not valid 

test, because results of the peak time must be read off an ALOHA plot, which is 

insufficiently accurate.   

 
Equation 1-Hypothesis Test No. 1 
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Equation 2-Alternative Hypothesis Test No. 1 

 

 

Thesis Goal 

The goal is to provide a tool to base level BE personnel for use in fulfilling their 

emergency response roles, in support of evacuation plan development and to provide 

risk-based control recommendations to the Incident Commander.  An effective risk-based 

control recommendation must consider the consequences, in order to assign relative risk 

and to choose the best option. 
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II. Literature Review 
 

The Department of Transportation (DOT) states that SIP should be used when 

evacuating the public would cause greater risk than staying in place, or when an 

evacuation cannot be performed.  The DOT further states that in-place protection may not 

be the best option for the following situations:  (1) when the gas or vapors are flammable; 

(2) if it will take a long time for the contaminant to clear the area; or (3) if buildings 

cannot be closed tightly. [9]   

 A key aspect of SIP risk assessment is the time delay to SIP implementation.  A 

review of nine experiments was conducted to look at the performance of men and women 

of different occupations constructing shelters in a residential test house.  Participants 

were allowed up to 60 minutes to construct a shelter with provided plastic sheeting, duct 

tape, and DHS guidance.  Participants’ ages ranged from 22 to 64, with occupations 

ranging from homemaker to chemist.  The approximate time to construct the shelters 

ranged from 20 minutes to 60 minutes, with 35 minutes being the mean time.  Depending 

on the temperature differences between the indoors and outdoors, the protection factors 

for the facility ranged from 1.3 to 539. [10]  The protection factors were a determined as 

the ratio of outdoor concentration to indoor concentration as a measure of infiltration into 

the shelter. 
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The starting point for estimating the interior contaminant concentration modeling 

is the estimation of contaminant concentrations at the building exterior via atmospheric 

modeling of the contaminant plume. 

Atmospheric Modeling 

To understand how to model the fate and transport of CBRN agents within the 

environment, first the atmospheric conditions and meteorology must be understood. 

  

Meteorological and Atmospheric Effects  

 The atmospheric conditions and meteorological effects play an important role in 

contaminant transport in the atmosphere.  The air motion in the lowest layers of the 

troposphere, which is adjacent to the earth crust, is a solid boundary of variable 

temperature and roughness, resulting in turbulence.  This turbulence is responsible for the 

transport of heat, water vapor, and agents from the surface to the atmosphere.  Turbulent 

flows are defined as irregular and random which cause the velocity components (profiles) 

of the air at any given location to vary randomly with respect to time. 

The stratum near the surface of the earth can be divided into three layers: the 

surface layer, Ekman layer, and free atmosphere. The surface layer is immediately 

adjacent to the surface and typically extending up to 30 to 50 meters above the surface.  

The vertical turbulent fluxes of momentum and heat are assumed constant with respect to 

height.  The Ekman layer is defined as the transition layer between the surface boundary 

layer of the atmosphere, where the shearing stress is constant, and the free atmosphere.  



7 

 

The free atmosphere is then defined as the portion of the earth's atmosphere, in which the 

effect of the earth's surface friction on the air motion is negligible and is treated as an 

ideal fluid [11] 

In meteorological applications, the surface elements causing roughness is usually 

so closely distributed (i.e. grass, crops, bushes, etc.) that only the height of the roughness 

elements and not their spacing is important.  This is why the roughness is characterized 

by a single length parameter. The surface is considered smooth if the roughness elements 

are sufficiently small to allow the establishment of a laminar sublayer in which they are 

submerged.  A rough surface is one where the elements are high enough to prevent 

laminar flow.  Table 1 shows common surfaces and the associated roughness length. 

Table 1-Roughness Lengths for Surfaces 

Type of Surface 
Roughness Length (zo),  

meters 
Lawn  or Grassland 0.01 

Fully Grown Root Crops 0.1 
Tree Covered  or Light  Residential 1.0 

Cities 3.0 
 

 The temperature difference between a parcel of air and the air surrounding it 

determines the degree of stability of the atmosphere.  This temperature difference causes 

the parcel to move up or down vertically.  Four conditions are used to describe this 

movement and the general stability of the atmosphere.  In stable conditions, this vertical 

movement is discouraged, whereas in unstable conditions the air parcel tends to move 

upward or downward and to continue that movement. When conditions neither encourage 

nor discourage air movement beyond the rate of adiabatic heating or cooling, they are 
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considered neutral. An inversion occurs when conditions are extremely stable and cooler 

air near the surface is trapped by a layer of warmer air above it. [12]  

In 1961 Pasquill developed the concept of stability classes to define the 

atmospheric stabilities based on routine observations. Table 2 below is a reproduction of 

the Pasquill stabilities. [13] 

 
Table 2-Estimation of Pasquill Stability Classes 

Surface Wind 
Speed at 10 m 

(m/sec) 

Solar Radiation 
Night Time 

Cloud Cover Fraction 

Strong Moderate Slight ≥ 4/8 ≤3/8 
<2 A A-B B   

2-3 A-B B C E F 

3-5 B B-C C D E 

5-6 C C-D D D D 

>6 C D D D D 

 

As represented in stability class table above, classes A, B, and C refer to daytime 

hours with unstable conditions. Class D is representative of overcast days or nights with 

neutral conditions. Finally classes E and F refer to nighttime, stable conditions and are 

based on the amount of cloud cover.  Once an understanding of how the atmospheric 

processes such as the movement of air and the exchange of heat dictate the fate of 

pollutants as they go through the stages of transport, dispersion, transformation and 

removal, then the proper dispersion model can be chosen. 
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Dispersion Models 

Models are approximate representations of real environmental systems.  There are 

several types of atmospheric contaminant dispersion models.  These models are a set of 

mathematical equations that predict concentrations due to plume dispersal and impaction. 

These models can incorporate dispersion estimates and various meteorological conditions 

including temperatures, wind speeds, stabilities, and topography.  

  There are four generic types of dispersion models: Gaussian, numerical, 

statistical, and physical. [14]  The Gaussian models use the Gaussian distribution equation 

of the plume in the vertical and horizontal directions under steady state conditions.   

Numerical models are generally used for urban locations that involve reactive 

pollutants, but require extremely detailed source and pollutant information. An example 

of a numerical method of is the box model.  The box model assumes that the atmosphere 

is one large homogenous volume with releases entering the box uniformly and 

instantaneously mixed throughout. 

   Statistical models are used when scientific information about the chemical and 

physical processes of a source is incomplete or vague.   The statistical models can be 

mathematically described in the spatial and temporal distribution by the Eulerian and 

Lagrangian approaches.  The Eulerian approach is the common way of treating the heat 

and mass transfer and the Lagrangian approach is used to describe changes in 

concentration relative to the moving fluid. [11] 

The Lagrangian particle model divides the release into thousands of tiny masses 

that are individually tracked as these masses are stochastically transported downwind.  
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The Eulerian grid model divides the atmosphere into a three-dimensional array of 

rectangular grids within which mixing are uniform and instantaneous. 

Physical models may also be known as computational fluid dynamic (CFD) 

models.  The CFD models provide complex analysis of fluid flow and are based on 

conservation of mass and energy and Newton’s laws of physics.  The Navier-Stokes 

equations are used as the governing equations for Newtonian fluid dynamics.  [15] 

 Over recent years, numerous software packages based on the four generic types 

have been developed to address a variety of applications.   Though, not all packages are 

useful for emergency response.  Several software packages suitable for use in emergency 

response are listed below. 

Atmospheric Modeling Software 

 Atmospheric modeling software has been developed by federal and state agencies 

utilizing the four basic model types to assess risk to populations.  The Hotspot Health 

Physics codes were created to provide emergency response personnel and emergency 

planners with a fast, field-portable set of software tools for evaluating incidents involving 

radioactive material. The model software is also used for safety analysis of facilities 

handling nuclear material. [16] 

The Area Locations of Hazardous Atmospheres (ALOHA) software is an 

atmospheric dispersion model used for evaluating releases of hazardous chemical vapors. 

ALOHA allows the user to estimate the downwind dispersion of a chemical cloud based 

on the toxicological and physical characteristics of the released chemical, atmospheric 

conditions, and specific circumstances of the release.  ALOHA is a part of the Computer-
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Aided Management of Emergency Operations (CAMEO) suite developed by EPA’s 

Office of Emergency Management (OEM) and the National Oceanic and Atmospheric 

Administration (NOAA) Office of Response and Restoration, to assist front-line chemical 

emergency planners and responders. [17] 

 The Hazard Prediction and Assessment Capability (HPAC) software, developed 

by the Defense Threat Reduction Agency (DTRA), is an atmospheric dispersion model to 

quickly predict the effects of hazardous material released into the atmosphere and its 

impact on civilian and military populations. [18] HPAC uses an advanced Lagrangian, 

Gaussian puff model that uses second-order turbulence closure techniques to relate the 

dispersion rates to measurable turbulent velocity statistics called SCIPUFF.  [19] 

The U.S. Naval Surface Warfare Center (NSWC) developed the Chemical and 

Biological Agent Vapor, Liquid, and Solid Tracking (VLSTRACK) computer model to 

predict atmospheric dispersion.  VLSTRACK is a Lagrangian transport and dispersion 

model employing the Gaussian puff method, in which a collection of three-dimensional 

puffs represents an arbitrary concentration field. [20] 

As numerous dispersion models have been developed to address a variety of 

atmospheric applications, there has been an equal amount of effort spent toward 

modeling the exposures of indoor settings.  

Indoor Exposure Modeling 

 Industrial hygienists use physical-chemical models to predict current and future 

exposures as well as historical exposures that cannot otherwise be reconstructed.    

Typically a tiered approach is used starting with very simple models moving to more and 
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more complicated models.  Such models include simple saturation models, the box model 

and then dispersion models. [21] 

 There are four common complex models that attempt to model the contaminant in 

air within a room.  These models are the Well-Mixed Room (WMR), Near Field/Far 

Field (NF/FF), Turbulent Eddy Diffusion without Advection, and Turbulent Eddy 

Diffusion with Advection.  The WMR model assumes the chemical instantaneously and 

perfectly mixes throughout the room, such that the concentration is uniform throughout 

the volume of air. The NF/FF model assumes that the total volume comprises two zones.  

The near field zone contains the emission source and the breathing zone of the worker of 

concern and the far field contains the remaining room volume.  The turbulent eddy 

diffusion involves the random motion of parcels of air which carry molecules or particles 

away from the source with or without an advective air flow along one of the room axes. 

[22] 

Indoor Modeling Software 
 

The Indoor Environment Management Branch of the U.S. EPA has developed an 

Indoor Air Quality (IAQ) model called RISK computer model. It was designed to allow 

for the calculation of individual exposure to indoor air pollutants from sources. The RISK 

is designed to calculate exposure due to individuals, activity patterns, and source use. The 

model also provides the capability to calculate risk due to the calculated exposure. [23]  

The Building and Fire Research Laboratory of the National Institute of Standards 

and Technology (NIST) has developed a software package for multizone indoor air 
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quality and ventilation analysis called CONTAM. [24]  CONTAM is designed to help  

determine: 1) Airflows with respect to infiltration, exfiltration, and room-to-room 

airflows in building systems driven by mechanical means, wind pressures acting on the 

exterior of the building, and buoyancy effects induced by the indoor and outdoor air 

temperature difference; 2) the dispersal of airborne contaminants transported by these 

airflows; transformed by a variety of processes including chemical and radio-chemical 

transformation, adsorption and desorption to building materials, filtration, and deposition 

to building surfaces, etc.; and generated by a variety of source mechanisms; and/or 3)  the 

predictions of exposure of occupants to airborne contaminants for eventual risk 

assessment. [25] 

The essential piece of information need to effectively within the interior 

concentration modeling is the estimation of infiltration and air exchange rates.  These 

values will ultimately determine the amount of contaminate present indoors. 

Infiltration 

Infiltration is the term used to describe the natural air exchange that occurs 

between a building and its environment when windows and doors are closed.  Infiltration 

is driven by pressure differences between the inside of the building and the outside air.  

The differences in pressure can be caused by wind or temperature differentials.  The 

infiltration may come from such places as cracks, openings in the building envelope, 

plumbing, ducts, and electrical wiring. 

The infiltration can also be thought of as “airtightness” of a building.  A review 

conducted by the National Institute of Standards and Technology (NIST) on airtightness 
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of commercial buildings in the U.S. found an average airtightness of 28.4 m3/h-m2 at 75 

Pa for 201 commercial buildings.  This means that there is 28.4 m3/h of air flow per 

square meter of above-grade surface area of building envelope. [26] 

Office facilities have forced ventilation systems using mechanical air handling 

systems to induce air circulation by way of fans or blowers.  Though less common, office 

facilities may still use natural ventilation, which involves using open windows and doors 

to increase circulation.   As SIP may require very quick implementation, other measures 

of airtightness already published, such as air exchange rates, offer a ready piece of data 

for use in modeling the transfer of the atmospheric contaminant release to the building 

interior. 

Air Exchange Rates 
 

Air exchange rates in office buildings 

The U.S. Environmental Protection Agency (EPA) conducted the Building 

Assessment Survey and Evaluation (BASE) study.  The BASE study was conducted over 

a five-year period from 1994-1998, to characterize determinants of indoor air quality 

(IAQ) and occupant perceptions in representative public and commercial office buildings.  

The study used a standardized protocol to collect extensive indoor air quality data from 

100 randomly selected public and commercial office buildings in 37 cities and 25 states.  

Information collected included the building age, construction features, use, furnishings, 

renovations, local pollutant sources, and general maintenance.  The HVAC systems were 

characterized regarding maintenance, design features, and the amount and quality of fresh 
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air being introduced into the building and indoor occupied area. Environmental 

measurements included parameters such as light, sound, temperature, and relative 

humidity as well as pollutant concentrations such as particulate matter, volatile organic 

compounds (VOCs), biological contaminants, and radon. [27] 

A review of the data from the 100 buildings in the BASE study for the American 

Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE) 

Journal states the mean design supply airflow capacity for all systems was 1.19 cubic feet 

per minute per square foot of floor area (cfm/ft2).  The mean design minimum outdoor 

intake was 0.18 cfm/ft2.  The mean ratio of minimum outdoor intake to supply airflow 

was 0.19 and the mean ratio of supply air to return air was 1.14.  The mean air changes 

per hour (ACH) were 2.00 inverse hours (h-1). [28]   The significance of this study is that 

the mean design criteria can then be used to estimate the air exchanges within a building. 

Air exchange rates in residential buildings 

 Residential buildings are different than commercial buildings, because they are 

generally much smaller and typically do not have heating and cooling systems that bring 

in fresh outside air.  Residential buildings rely on natural ventilation and individuals 

opening doors to bring in fresh outside air.  Depending upon the building characteristics 

and environmental conditions, typical exchange rates in residences with normal activities 

vary from 0.07 to 4.0 ACH. [29]  Under ideal conditions, a well-constructed energy 

efficient home may have an air exchange rate of 0.1 ACH and with strong winds or high 

temperature differential; the air exchange might be as high as 2.4 ACH. [30] 
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Natural Air Exchange Rates 

 When there is no forced ventilation and the facility or residence is not pressurized 

by internal events, such as an internal fire, the ventilation will occur by natural effects, 

such as wind pressure on the building and temperature differences between indoors and 

outdoors.  Two equations can be used to estimate the volumetric flow rate and are listed 

below. [31] 

 
Equation 3-Wind Pressure Driven Ventilation Rates 

 

where 

 

 

 

 

 

 

 

 

Equation 4-Temperature Driven Ventilation Rates 

 

where 
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Exposure Limits 
 

Essential to the risk assessment is the selection of an appropriate exposure limit to 

compare with the estimated contaminant concentration output from the various models.  

These exposure limits can also be used to forecast the expected casualties.  There are 

many exposure limit sources with varied application intent and underlying assumptions. 

 

Occupational Exposure Limits 

Hazardous substance exposure limits can be derived for the general public or for 

workers exposed to the hazardous substance.  The American Conference of 

Governmental Industrial Hygienists (ACGIH) annually publishes guidelines known as 

Threshold Limit Values (TLVs®) for use in determining safe levels of exposure to 

chemicals found in the workplace.  TLVs® refer to airborne exposures to chemical 

substances and represent conditions under which it is believed that nearly all workers 
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may be repeatedly exposed, day after day, over a working lifetime, without adverse 

health effects for the conventional 8-hour workday and 40-hour workweek. [32] 

 The National Institute for Occupational Safety and Health (NIOSH) publishes 

their Recommended Exposure Limits (RELs).   RELs have been developed for up to a 10 

hour workday and 40-hour workweek.    RELs are recommended for workplace exposure 

limits and appropriate preventive measures to reduce or eliminate adverse health effects 

and accidental injuries. [33] NIOSH is the federal agency responsible for conducting 

research and making recommendations for the prevention of work-related injury and 

illness and is part of the Centers for Disease Control and Prevention (CDC) under the 

Department of Health and Human Services (DHHS). [34] 

 The Occupational Safety and Health Administration (OSHA) set enforceable 

Permissible Exposure Limits (PELs) to protect workers against the health effects of 

exposure to hazardous substances. PELs are regulatory limits on the amount or 

concentration of a substance in the air and have been developed for the conventional 8-

hour workday and 40-hour workweek. [35]  The OSHA mission is to prevent work-

related injuries, illnesses, and deaths, and it is part of the Department of Labor. [36] 

 

Military Guidelines 

The U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM) 

provides Military Exposure Guidelines (MEGs) for chemicals in air, water, and soil for 

use during deployments. USACHPPM provides application guidance describing how the 

MEGs can be used to characterize the level of health and mission risks associated with 
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identified or anticipated exposures in the deployment environment. The MEGs are 

designed by USACHPPM to address a variety of scenarios such as a single catastrophic 

release of a chemical, temporary exposure conditions lasting hours to days, or for 

continuous ambient environmental conditions that might be present in a deployed 

location.  Such environmental conditions may include regional pollution, use of a 

contaminated water supply, or persistent soil contamination where there is regular 

contact. [37] 

 

Emergency Response Guidelines 

The U.S. EPA has published Acute Exposure Guideline Levels (AEGLs) intended to 

represent threshold exposure limits for the general public to use in emergency exposure 

periods ranging from 10 minutes to 8 hours. The three levels of severity for AEGLs have 

been defined as AEGL-1 and AEGL-2, and AEGL-3 and have values for five exposure 

periods (10 minutes, 30 minutes, 1 hour, 4 hours, and 8 hours). AEGL-3 is defined as the 

airborne concentration above which it is predicted that the general population, including 

susceptible individuals, could experience life-threatening health effects or death.  AEGL-

2 is then defined as the airborne concentration above which it is predicted that the general 

population, including susceptible individuals, could experience irreversible or other 

serious, long-lasting adverse health effects or an impaired ability to escape.   Lastly, 

AEGL-1 is defined as the airborne concentration above which it is predicted that the 

general population, including susceptible individuals, could experience notable 

discomfort, irritation, or certain asymptomatic non-sensory effects. [38] 
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The American Industrial Hygiene Association (AIHA) produces the Emergency 

Response Planning Guideline (ERPG) values intended to provide estimates of 

concentration ranges where one reasonably might anticipate observing adverse effects. 

Three ERPGs have been defined as ERPG-1 and ERPG-2, and ERPG-3 for a one hour 

exposure period. The ERPG-1 is the maximum concentration below which it is believed 

that nearly all individuals could be exposed without experiencing other than mild 

transient adverse health effects or perceiving a clearly defined, objectionable odor.  The 

ERPG-2 is the maximum concentration below which it is believed that nearly all 

individuals could be exposed without experiencing or developing irreversible or other 

serious health effects or symptoms which could impair an individual's ability to take 

protective action. The ERPG-3 is the maximum concentration below which it is believed 

that nearly all individuals could be exposed without experiencing or developing life-

threatening health effects. [39] [40] 

The Subcommittee on Consequence Assessment and Protective Actions (SCAPA) 

provides the U.S. Department of Energy (DOE) and National Nuclear Security 

Administration (NNSA) with technical information and recommendations for emergency 

preparedness.  SCAPA has developed Temporary Emergency Exposure Limit (TEEL) 

values so that DOE facilities could conduct appropriate hazard analyses and conduct 

consequence assessments for chemicals not covered by AEGLs or ERPGs.  SCAPA has 

defined four TEEL limits.  TEEL-0 is defined as the threshold concentration below which 

most people will experience no appreciable risk of health effects.  TEEL-1 is defined as  

the maximum air concentration below which it is believed nearly all individuals could be 

exposed without experiencing other than mild transient adverse health effects or 
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perceiving a clearly defined objectionable odor.  TEEL-2 is defined as the maximum air 

concentration below which it is believed nearly all individuals could be exposed without 

experiencing or developing irreversible or other serious health effects or symptoms that 

could impair their abilities to take protective action.  Lastly TEEL-3 is defined as the 

maximum air concentration below which it is believed nearly all individuals could be 

exposed without experiencing or developing life-threatening health effects. [40] 

With an understanding of how the outdoor and indoor environment affects the 

transport of a CBRN agent and how to apply the appropriate exposure limit, an accurate 

health risk assessment can be conducted to evaluate the consequences of improperly 

sheltering.  
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III. Methodology 

 

It is important to shelter-in-place in a timely manner, in that it is most beneficial when 

people enter and construct the shelter before the arrival of a plume of hazardous agent 

and exit soon after the cloud passes. 

 To assess the effectiveness of SIP on an Air Force installation against a hazardous 

release of a chemical, a well mixed box model was used to assess the indoor exposure. 

The Palazzi et al. modified continuous Gaussian dispersion model was used to predict the 

outdoor concentration, and emergency exposure guidelines were used to assess the 

associated health effects. The Gaussian dispersion model and indoor box model were 

chosen over the more complicated models, because these models can be solved quicker 

and allow the ability to test and react on SIP decisions quickly.    

 The Gaussian distribution equation was used because it involves relatively simple 

calculations requiring only dispersion parameters to identify the variation of pollutant 

concentrations away from the center of the plume. This distribution equation estimates 

the ground level pollutant concentrations based on time-averaged atmospheric variables 

such as temperature and wind speed. 

  

Atmospheric Modeling 
 

Under ideal conditions the mean concentration of an agent released from a point 

source has a Gaussian distribution.  Even beyond the case of stationary, homogeneous 
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turbulence, the Gaussian distribution serves as the basis for a large class of atmospheric 

diffusion formulas that are commonly used today.  Rarely does an accidental or incidental 

release of a toxic agent fall into the situation of an instantaneous release or continuous 

release.  Gaussian puff models have been adapted to deal with these short-term releases 

[41]. 

The equation describing the continuous release from a point source that follows 

the Gaussian distribution is listed below. 

Equation 5-Gaussian distribution for a continuous point source 

 

where  

 

 

 

 

 

 

 

 

 

 For any time during the release of chemical at any coordinate (x,y,z), the equation 

below is used to calculate to un-averaged outdoor exposure.   
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Equation 6-Palazzi et al. (t≤tr) 

 

where 

 

 

 

 

 

 

 

 

 

 

For any time after the release of chemical at any coordinate (x,y,z), the equation 

below is used to calculate the un-averaged outdoor exposure.   

 

Equation 7-Palazzi et al. (t≥tr) 
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where 

 

 

 

 

 

 

 

 

 

 

 The dispersion coefficients are based on curves fit to the Pasquill-Gifford curves 

and depend on the downwind distance and stability class. [42] [43] [44] 

Indoor Modeling 
 

Mass Balance on Commercial Buildings with HVAC Systems 
 

A simple box model can be used to represent the building and heating, ventilation, 

and air conditioning (HVAC) system to develop the mass balance.  The purpose of the 

HVAC system is to provide heating, cooling and humidity control within the building.  

The primary purpose of the plenum and air control is to mix fresh outside air and return 
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air in proper ratio to allow efficient use of energy while attempting to keep contaminant 

levels down.  The mass balance assumes conservation of mass and good mixing within 

the building.  To overcome some of the limitations of the box model the variables for 

non-ventilatory loss rate and the mixing efficiency can be added to the mass balance 

equations.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-Box model for Commercial Building with HVAC system 

 

 

 

HVAC System 

CB, VB, k 
Infiltration Exfiltration 

Cout, QN CB, Qx 

QS QR 

QC 

QE Cout,  
QI 

Building 



27 

 

where 

 

 

 

 

 

 

 

 

 

 

 

The basic mass balance equation for the toxic substance in a building with 

filtration included is provided below.  The indoor generation of contaminant is assumed 

to be zero, because the contaminant source is exterior to the building 

Equation 8-Mass Balance on Commercial Building 
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Equation 9-Mass Differential on Building 

 

 

where 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mixing factor (m) is a dimensionless number that is used as an uncertainty 

factor to describe hot spot concentrations associated with poor mixing within rooms.  The 
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non-ventilatory loss rate (k) is an attempt to describe how organic compounds may 

deposit onto the environmental surfaces where they can accumulate, degrade, or reenter 

the air.  The mixing factor and non-ventilatory loss coefficients must be experimentally 

derived. Experimental work on characterization of ventilation systems in buildings 

suggests mixing factor values of 0.30 to 0.68.  The values vary depending on location 

within the building. [45] 

The mass balances for both the supply and return air are then substituted into the 

derived mass balance for the building. The differential mass balance on the building then 

resembles equation 12 below. 

 

Equation 10-Mass Balance on Supply Air 

 

Equation 11-Mass Balance on Return Air 

 

where 
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Equation 12-Complete Differential Mass Balance on Building 

 

  The differential equation is rearranged in the form below to resemble the general 

form of partial differential equations.  

Equation 13-General Form and Solution for Partial Differential Equation 

 

 

The general solution to the mass balance of the building is given in equation 14 

below. Rearranging the general solution reveals that it mirrors the WMR model from the 

AIHA Exposure Assessment Strategy, given in equation 15. [22] 

Equation 14-General Solution to Building Concentration 

 

 

Equation 15-WMR Model for Building Concentration 
  

 

 

 Since the outside concentration is dynamic, the solution to equation 13 was solved 

numerically at the time interval of one second.  During that one second, it was assumed 
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that the outside concentration was constant and the initial concentration becomes the 

building concentration from the prior second.  The numerical solution is listed in equation 

16 below. 

 
Equation 16-Numerical WMR Model for Building Concentration 

 

 

 

Mass Balance on Residential Buildings  

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Box model for Residential Buildings without HVAC systems 
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where 

 

 

 

 

 

 

A simple box model can be used to represent a residential home to develop the 

mass balance.  The mass balance assumes conservation of mass and good mixing within 

the residency.  To overcome some of the limitations of the box model the variables for 

non-ventilatory loss rate and the mixing efficiency can be added to the mass balance 

equations. 

Equation 17-Mass Balance on Residential Building 

 

 
Equation 18-Mass Differential on Residential Building 

 

 

where 
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The mass balances for infiltration and exfiltration were then substituted into a 

derived mass balance for the building. 

 
Equation 19-Mass Balance on Infiltration 

 

The differential mass balance on the building then resembles the equation 20. 

Equation 20-Complete Differential Mass Balance on Building 

 

  The differential equation is rearranged in the form below to resemble the general 

form of partial differential equations. Applying the general solution for a partial 

differential equation takes the form shown below. The general solution to the mass 

balance of the building is given in the equation 21 and simplified to equation 22.  

Equation 21-General Solution to Building Concentration 
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Equation 22-WMR Model for Building Concentration 
  

 

 

Once again, since the outside concentration is dynamic, the solution to equation 

22 above was solved numerically at the time interval of one second.  During that one 

second, it was assumed that the outside concentration was constant and the initial 

concentration becomes the building concentration from the prior second.  The numerical 

solution is listed in equation 23 below. 

Equation 23-Numerical WMR Model for Building Concentration 
 

 

 

Method Parameters  
 

 Two scenarios were chosen to test the model and the effectiveness of the different 

SIP strategies.  The first scenario involved the accidental or intentional release of chlorine 

into the environment.  The second scenario involved the intentional release of sarin gas 

by a terrorist.  

 Three key parameters of the release event play a role in determining the 

effectiveness of SIP strategies.  They include the release characteristics, exposure limits, 

and the strategy itself.  
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Chlorine Release Characteristics 

 The release duration and quantities were selected to represent realistic scenarios.  

Chlorine is often transported by 150-lb cylinders, one-ton cylinders, 17-ton tanker trucks, 

or 90-ton railcars. The associated release times would be durations of 10 minutes, 1 hour, 

and 4 hours, with the worst case scenario using 10 minute duration. [46]  If an Air Force 

installation treats their drinking water, swimming pools, or is located near or has a 

Wastewater Treatment Plant (WWTP), these quantities are realistic.    

 The dispersion of chlorine was modeled under six stability classes: Extremely 

Unstable (Class A), Moderately Unstable (Class B), Slightly Unstable (Class C), Neutral 

(Class D), Slightly Stable (Class E), and Moderately Stable (Class F), and two wind 

speeds of 1.5 meters per second (mps) and 3 mps.  These wind speeds are moderate and 

are assumed in U.S. EPA Risk Management Guidance in their worst case scenarios. [46]   

Atmospheric mixing height (h) was given a value of zero to simulate a ground release. 

Chlorine Exposure Limits 

The Department of Energy Protective Action Criteria (PAC) for emergency 

planning of chemical release events was used to define the exposure limits.  The PACs 

are based on the following chemical exposure limit values:  Acute Exposure Guideline 

Level (AEGL), Emergency Response Planning Guideline (ERPG), and the Temporary 

Emergency Exposure Limit (TEEL).  The PAC values are based on 60-minute chlorine 

AEGL values published by the U.S. EPA. The values for chlorine are listed in the table 

below. 



36 

 

 
Table 3-Chlorine PAC Values 

 TEEL-0 PAC-1 PAC-2 PAC-3 
Units of PPM 0.5 0.5 2 20 

Units of mg/m3 1.45 1.45 5.8 58 

 

Chlorine Shelter-In-Place Strategy 

 The decision to shelter should be made as soon as possible to limit the delay in 

time that it takes to shelter, thereby reducing infiltration during the passing ambient 

plume.  The optimal time to terminate SIP should be when the tail of the hazardous 

plume has passed the shelter. [47]  Often there is a time lag between the time the order to 

shelter is given and the time that the shelter is constructed and the HVAC system is 

shutdown.  The values of 1 minute, 30 minutes, 1 hour, 2 hours, and infinity were used 

for the implementation delay. 

 The building air change rates of 0.5, 1, and 2 ACH were adopted for the model 

and were chosen at one-quarter, one-half, and one times the average identified in the U.S. 

EPA BASE study.  [28]  Infiltration rates of 0.1 and 0.7 ACH when the building HVAC 

systems were shutdown and are consistent with those identified in DOE literature.  [29] 

The values of 0.4 and 1 were used to describe the mixing factor (m) and the uncertainty 

of hotspot concentrations associated with poor mixing within rooms. The mixing factor 

of 0.4 is a useful starting point in industrial hygiene modeling indoor exposures. [21] The 

table below is a summary of parameters tested by the model for chlorine. 
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Table 4-Chlorine Summary Parameters 

Release Characteristics 
Release Duration, Tr (min) 10, 60, 240 

 
Release Amount (ton) 0.075,1, 17, 90 

Stability Class and Mixing Height 
Class A, B,C,D,E,F 

H=0 
Mean Wind Velocity (m/s) 1.5, 3 

Building Characteristics 
Air Exchange Rates 0.5, 1, 2 

Infiltration Rates 0.1, 0.7 
Mixing Factor 0.4, 1 

Downwind Distance (m) 100, 1000, 3000 
Shelter-In-Place Strategy 

Implementation Delay (hr) 0.017, 0.5, 1,2,∞ 
 

Sarin Release Characteristics 

 The sarin release duration and quantities were selected to represent realistic 

scenarios.  Quantities of sarin chosen were 150-lb cylinders, one half-ton cylinders, and 

one-ton cylinders with the release durations of 1 minute, 10 minutes, and 1 hour.  

Because the likelihood that a terrorist could be capable of releasing large quantities of 

sarin gas is small, lower quantities and release times were chosen.    

 The dispersion of chlorine was modeled under six stability classes: Extremely 

Unstable (Class A), Moderately Unstable (Class B), Slightly Unstable (Class C), Neutral 

(Class D), Slightly Stable (Class E), and Moderately Stable (Class F), and two wind 

speeds of 1.5 meters per second (mps) and 3 mps.  These wind speeds are moderate and 
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are assumed in U.S. EPA Risk Management Guidance in their worst case scenarios. [46]   

Atmospheric mixing height (h) was given a value of zero to simulate a ground release. 

Sarin Exposure Limits 

The exposure limit values for sarin are listed in the table below.  PAC values 1-3 

for sarin refer to the 60-minute AEGL values. 

Table 5-Sarin PAC Values 

 TEEL-0 PAC-1 PAC-2 PAC-3 
Units of PPM 0.00015 0.00048 0.006 0.022 

Units of mg/m3 0.00075 0.00275 0.0344 0.126 
 

Sarin Shelter-In-Place Strategy 

 The values of 1 minute, 30 minutes, 1 hour, 2 hours, and infinity were used for the 

implementation delay. The building air change rates of 0.5, 1, and 2 ACH, with 

infiltration rates of 0.1 and 0.7 ACH when the building HVAC systems were shutdown. 

The values of 0.4 and 1 were used to describe the mixing factor (m) and the uncertainty 

of hot spot concentrations associated with poor mixing within rooms.  These parameters 

were selected for the same reason as the chlorine scenario.  The table below is a summary 

of parameters tested by the model for sarin. 
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Table 6-Sarin Summary Parameters 

Release Characteristics 
Release Duration, Tr (min) 1, 10, 60 

 
Release Amount (ton) 0.075, 0.5, 1 

Stability Class and Mixing Height 
Class A, B,C,D,E,F 

H=0 
Mean Wind Velocity (m/s) 1.5, 3 

Building Characteristics 
Air Exchange Rates 0.5, 1, 2 

Infiltration Rates 0.1, 0.7 
Mixing Factor 0.4, 1 

Downwind Distance (m) 100, 1000, 3000 
Shelter-In-Place Strategy 

Implementation Delay (hr) 0.017, 0.5, 1,2,∞ 
 

Model Software 
  

 Since one goal was to provide a tool to base level BE personnel, a Microsoft 

Office Excel® 2007 spreadsheet was used to numerically solve the transport equations 

developed above and to evaluate the SIP decisions.   

Model Validation 

 The model results were validated against the scenario presented in the W.R. Chan 

et al. study and against two scenarios in ALOHA dispersion software to generate the 

concentration at downwind points plot. The purpose of the validation process is to show 

that the outputs of the transport models used in the thesis are consistent with results 

published and produced by commercially available products. 
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 The W.R. Chan et al. study predicted normalized outdoor and indoor 

concentrations for a release under stability class D and with wind speed of 3 mps.  The 

indoor concentrations were modeled for a 0.2 ACH and 2 ACH at 1 kilometer downwind 

of the release. [2] 

 The two scenarios used in ALOHA involved one release of chlorine and one 

release of sarin.  The specific details of these two simulations can be found in Appendix 

D and E. 

SIP Strategy Validation 

 The methodology for evaluating whether or not a particular strategy is effective or 

not at protecting the population will consist of comparing the predicted concentration to 

the appropriate exposure limits.  The risk assessment will use the tiered PAC values for 

chemical release events were used to define the effectiveness and expected physiological 

responses.   
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IV. Results and Analysis 

 

Validation Results 

The model results were validated against the scenario presented in the W.R. Chan et 

al. study and against two scenarios in ALOHA dispersion software to generate the 

concentration at downwind points plot to ensure that the thesis model was as accurate in 

producing results. 

W.R. Chan et al. Validation 

 The outdoor and indoor concentrations for a 6 minute release of hazardous 

chemical were predicted under a stability class D and wind speed of 3 mps.    The 

concentrations were then normalized to the peak outdoor concentration and plotted in 

figure 3 below for both 0.2 ACH and 2 ACH at 1 kilometer downwind of the release 

predicted by the model outlined in the methodology section.  
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Figure 3-Chan-6 min Release 
 

The outdoor and indoor concentrations for a 60 minute release of hazardous 

chemical was predicted under a stability class D and wind speed of 3 mps.    The 

concentrations were then normalized to the peak outdoor concentration and plotted in 

figure 4 below for both 0.2 ACH and 2 ACH at 1 kilometer downwind of the release. 
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Figure 4-Chan 1-hour Release 
 

The outdoor and indoor concentrations for a 5 hour release of hazardous chemical 

was predicted under a stability class D and wind speed of 3 mps.    The concentrations 

were then normalized to the peak outdoor concentration and plotted in figure 5 below for 

both 0.2 ACH and 2 ACH at 1 kilometer downwind of the release. 
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Figure 5-Chan 5-hour Release 
 

 The normalized predicted indoor and outdoor results matched the results 

published in figure 1 of Chan et al. for a release of hazardous material. [2] 

ALOHA Validation 

Chlorine Scenario  

The outdoor and indoor concentration for a 10 minute release of a 1-ton chlorine 

cylinder was predicted under a stability class D and wind speed of 3 mps.    The 

concentrations were then plotted below for both 0.32 ACH and 2 ACH at 1 kilometer 

downwind of the release. 
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Figure 6-Chlorine Validation Scenario 
 

The trends of the predicted indoor and outdoor results matched the results in the 

figures located in Appendix D under a stability class D and wind speed of 3 mps at 1 

kilometer.  The results of the thesis model were slightly higher than the ALOHA reported 

values, but are likely due to the differences in the dispersion coefficients used by 

ALOHA.  The difference between ALOHA and thesis model is like due to the use of a set 

of Briggs dispersion coefficients describe the vertical and crosswind dispersion and the 

parameters used to develop the dispersion coefficient in the along-wind direction caused 

by wind shear. [48] 

Sarin Scenario 

The outdoor and indoor concentration for a 1 minute release of 1000 pounds of 

sarin gas was predicted under a stability class D, wind speed of 3 mps, and roughness of 

3 m.    The concentrations were then plotted below for both 0.32 ACH and 2 ACH at 1 

kilometer downwind of the release. 
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Figure 7-Sarin Validation Scenario 
 

The trends of the predicted indoor and outdoor results matched the results in the 

figures located in appendix E under a stability class D and wind speed of 3 mps at 1 

kilometer.  The results of the thesis model were slightly higher than the ALOHA reported 

values, but again are likely due to the differences in the dispersion coefficients used by 

ALOHA. 

Hypothesis 

The hypothesis test results are listed in the table below.   The specific details of 

these simulations can be found in Appendix D and E. 

 

 



47 

 

 

Table 7-Hypothesis Test Results 

Scenario 
ALOHA Results (ppm) Thesis Model (ppm) Outdoor 

Within 
15% 

Indoor 
Within 

15% Outdoor Indoor Outdoor Indoor 

Chlorine #1 (0.32 ACH) 23 1.19 26.1 1.37 Y Y 

Chlorine #1  (2 ACH) 23 6.29 26.1 7.94 Y Y 

Chlorine #3 (0.32 ACH) 4.33 0.223 8.60 0.44 N N 

Chlorine #3  (2 ACH) 4.33 1.18 8.60 2.326 N N 

Sarin #1 (0.32 ACH) 8.97 0.0789 13.91 0.35 N N 

Sarin #1  (2 ACH) 8.97 0.459 13.91 2.08 N N 

Sarin #2 (0.32 ACH) 4.89 0.0575 5.13 0.1129 Y N 

Sarin #2  (2 ACH) 4.89 0.334 5.13 0.6323 Y N 

Sarin #3 (0.32 ACH) 4.89 .0575 7.18 0.1137 N N 

Sarin #3  (2 ACH) 4.89 0.334 7.18 0.6544 N N 

 

The trends of the predicted indoor and outdoor results matched the results in the 

figures located in appendix D and E, however the results of the thesis model were 14 to 

50 percent higher than the ALOHA reported values.  The differences were beyond 15%, 

but were within an order of magnitude in concentration, which may be acceptably 

accurate for this type of estimating. This is likely due to the differences in the dispersion 

coefficients used by ALOHA.
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V. Discussion 

 

This thesis attempted to evaluate the effectiveness of SIP on an Air Force 

installation by looking at the feasibility of combining outdoor dispersion models with 

modified industrial hygiene exposure models to estimate indoor airborne exposures to 

test the consequences associated with the delay of implementation of SIP procedures. 

Scenario Results 

The two scenarios outlined in Tables 4 and 6 were used to test the model and the 

effectiveness of the different SIP strategies.  The trends are discussed below. 

Stability Class 

The outdoor concentration for a 1 minute release of 150 pounds of sarin gas was 

predicted under the A, B, C, D, E, and F stability classes and wind speed of 1.5 mps.    

The concentrations were then plotted below for at a 1 kilometer downwind of the release. 

 

Figure 8-Stabiltiy Class Comparison 
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 It can be noted that as the atmosphere becomes more stable, the observed peak 

downwind concentration will increase.  This reconfirms that a release at night will result 

in a higher exposure to the population.  

 

Wind Speed 

The outdoor concentration for a 10 minute release of 150 pounds of chlorine was 

predicted under stability class D and wind speeds of 1.5 mps and 3.0 mps.    The 

concentrations were then plotted below for at a 1 kilometer downwind of the release. 

 

Figure 9-Wind Speed Comparison 
 

 As expected, the outdoor concentration arrives quicker as wind speed increases, 

as well as the peak outdoor concentration decreases as wind speed increases. 
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Air Exchange Rates  

 To illustrate the effects of air exchange rates on indoor exposure, the outdoor and 

indoor concentrations for a 10 minute release of a 1-ton chlorine cylinder were predicted 

under a stability class E and wind speed of 3 mps.    The concentrations were then plotted 

below for both 0.5 ACH and 2 ACH at 1 kilometer downwind of the release. 

 

Figure 10-Air Exchange Rate Comparison 
 

 As seen in figure 10 above, the exposure received by indoor occupants is 

substantially higher in a facility that has a large air exchange rate than that which has a 

lower air exchange rate. 

Distance 

To illustrate the effects of distance, the outdoor and indoor concentration for a 10 

minute release of a 1-ton chlorine cylinder was predicted under a stability class E and 
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wind speed of 3 mps.    The concentrations were then plotted below for a 1 km and 3 km 

downwind distance of release. 

 

Figure 11-Distance Comparison 
 

 As seen in figure 11 above, the peak outdoor exposure decreases with increased 

distance, however, the spread or the amount of time that the chlorine lingers at the 

location increases.  

Ideal Mixing 

To illustrate the effect on the indoor concentration due to the assumption of good 

mixing, the outdoor and indoor concentrations for a 10 minute release of a 1-ton chlorine 

cylinder were predicted under a stability class F and wind speed of 3 mps at downwind 

distance of 1 km with a mixing factor of 1 or perfect mixing and 0.4 or imperfect mixing. 
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Figure 12-Well Mixing Comparison 
 

As seen in figure 12 the peak indoor exposure increases with decreased mixing 

factor.  This can be associated with concentration hotspots with poor mixing within a 

building, so the mixing factor acts as a safety factor to describe that uncertainty of 

overexposure. 

SIP Strategies 

To illustrate the consequences on delaying the process of sheltering, the outdoor 

and indoor concentrations for a 10 minute release of a 1-ton chlorine cylinder were 

predicted under a stability class F and wind speed of 3 mps at a downwind distance of 1 

km with the exchange rate of 2 ACH and a 0.1 ACH infiltration rate.    The 

concentrations were then plotted below for a no HVAC shutdown (infinite time), 1 

minute shutdown, and 30 minute shutdown against the exposure guidelines.  
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Figure 13-Short-Term Chlorine Release Strategy 

 

 The importance of immediate implementation is apparent here in that only then 

does the trial come close to the TEEL-0 value.  That trial was the one minute shutdown of 

the HVAC system with a 60 minute time weighted average of 1.77 milligrams per cubic 

meter (mg/m3).  In this case it would be believed that nearly all individuals could be 

exposed without experiencing other than mild transient adverse health effects or 

perceiving a clearly defined objectionable odor.  It should also be noted that a late 

shutdown of 30 minutes has the negative effect of increasing the indoor exposure 

approximately 10 times greater than not shutting the HVAC system off at all (time of 

infinity).  

To illustrate the consequences of delaying the process of sheltering on a virtually 

instantaneous release, the outdoor and indoor concentrations for a 1 minute release of a 

150-lb sarin gas container was predicted under a stability class F and wind speed of 1.5 
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mps at downwind distance of 1 km with the exchange rate of 2 ACH and a 0.1 ACH 

infiltration rate.    The concentrations were then plotted below for no HVAC shutdown, 1 

minute shutdown, and 30 minute shutdown against the exposure guidelines.  

 

Figure 14-Short-Term Sarin Release Strategy 
 

It is apparent in this case that the one minute shutdown of the HVAC system with a 

60 minute time weighted average of 0.753 milligram per cubic meter (mg/m3) is greater 

than the PAC-3 of 0.126 mg/m3.  In this case, it would be expected that a good proportion 

of individuals could experience or develop life-threatening health effects.  It should also 

be noted that a late shutdown of 30 minutes has a negative effect of increasing the indoor 

exposure approximately 3 times greater than not shutting the HVAC system off. 
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To illustrate the consequences of delaying the process of sheltering for a medium 

length release, the outdoor and indoor concentrations for a 30 minute release of a 17-ton 

chlorine cylinder were predicted under a stability class F and wind speed of 3 mps at 

downwind distance of 1 km with the exchange rate of 2 ACH and a 0.1 ACH infiltration 

rate.    The concentrations were then plotted below for no HVAC shutdown (infinite time 

to SIP), 1 minute shutdown, and 30 minute shutdown against the exposure guidelines. 

 

Figure 15-Medium-Term Chlorine Release Strategy 
 

It is apparent in this case that the one minute shutdown of the HVAC system is the 

only strategy that is less than the PAC-3 of 58 mg/m3.  In this case, it would be expected 

that a good proportion of individuals could experience or develop life-threatening health 

effects if management was not able to shutdown the HVAC.   

To illustrate the consequences on delaying the process of sheltering on an extended 

length release, the outdoor and indoor concentrations for a 60 minute release of a 17-ton 

chlorine cylinder were predicted under a stability class F and wind speed of 3 mps at a 
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downwind distance of 1 km with the exchange rate of 2 ACH and a 0.1 ACH infiltration 

rate.    The concentrations were then plotted below for no HVAC shutdown (infinite time 

to SIP), 1 minute shutdown, and 30 minute shutdown against the exposure guidelines. 

 

 
Figure 16-Extended Chlorine Release Strategy 

 

It is apparent in this case that not one strategy results in a concentration below the 

PAC-3 exposure limit.  However, this case also reveals that the failure to shut down the 

HVAC system would result in a peak indoor concentration almost 50% above the peak 

outdoor concentration. 

It is important that the decision to shelter-in-place must be made immediately to 

reduce the exposure to those sheltered.  Sheltering-in-place can provide adequate 

protection against hazardous material during short-term accidental and intentional 

releases.  However, the level of protection provided by a SIP strategy depends on the 
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level of filtration afforded by the building and HVAC system, the envelope airtightness, a 

quick decision by the incident commander, and the ability to shut down the system 

immediately. In other words, protection is a function of filtration, infiltration, and time to 

shutdown. 

 

Given that the approximate time to construct a shelter within an existing structure 

ranges from 20 minutes to 60 minutes, with 35 minutes being the mean time, it is 

imperative that procedures to shutdown the HVAC system be enacted immediately.   This 

time does not include the amount to disseminate information to individuals that they are 

required to shelter.   During short-term CBRN releases, it would not be beneficial to 

construct the shelter, and time better served concentrating on shutdown of HVAC system.  

However, during long-term CBRN releases, constructing the shelters are still beneficial. 

When in a deployed location, respiratory protection can be used in combination 

with SIP to significantly reduce the exposure to military personnel.  As seen in Figure 17 

below, when factoring in an assigned protection factor (APF) of 50 for a full-face air 

purifying respirator, all indoor exposures from the short-term sarin scenario reduced 

below the modified PAC-3 level of 6.3 mg/m3.  APFs are numbers assigned to a 

respirator by OSHA that indicate the level protection that a respirator or class of 

respirators is expected to provide to employees when used properly.   
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Figure 17-Short-Term Sarin Release plus RP 
 

Beyond the ability of these simple models to estimate evacuation times, they can 

also help exercise planners with developing realistic CBRN exercises that are capable of 

linking exposures to casualties.  The models can allow medical personnel to link post 

release signs and symptoms with likely dose received.  They also can be used to predict 

casualty loads on the local hospitals during vulnerability assessments and drive changes 

to plans to be able to handle those casualties. 

Model Performance 

Since one goal was to provide a tool to base level BE personnel, an Excel® 2007 

spreadsheet was used to numerically solve the developed transport equations and to 

evaluate the effectiveness of the SIP decisions.  This thesis has shown that Excel® 2007 

was capable of handling the calculations and challenge decision tree, but performance 
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was degraded.  Excel worksheet memory management caused a 20 to 30-sec delay in 

completing the calculations and occasionally caused Excel® to crash.   Additional 

conditional calculations had to be performed to overcome the limitations of Excel 

functions.  Excel only calculates error functions for positive numbers. 

For the purpose of this thesis, the source emission rate was assumed to be 

constant and the total mass is averaged over the duration of release and follows the form 

in the equation below.  However, in an emergency response scenario, emission rates may 

not be constant.  Such a case might be a release through a large pool of liquid like 

toluene, where the source emission rate is dependent on properties such as vapor pressure 

and diffusion.   

Equation 24-Constant Source Generation 

 

 In the long-term, coding the models into a different and more robust 

programming language would allow for quicker and more reliable decision making.  

Consideration must be given to what types of software packages are available to the base 

level planners. 

Any long-term modeling efforts need to be checked against the current efforts of 

the Joint Chemical, Biological, Radiological and Nuclear (JCBRN) Defense Program and 

their efforts under the Joint Operation Effects Federation (JOEF) Project.  JOEF is a 

modeling and simulation tool to determine effects and assess the impact and risks 

associated with CBRN releases on military personnel and operations. [49]  As urban 
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transport models such as MESO and RUSTIC are used to describe the contaminant flow 

around buildings and multizonal models to describe the transport within buildings, the 

more that resources in pre-planning will be required to take advantage of the models.  

 

SIP Recommendations 

Given that SIP can provide adequate protection against hazardous materials 

during short-term accidental and intentional releases, the following recommendations are 

given to help improve the decision making of whether to evacuate or shelter: 

• Emergency planners (Civil Engineering Readiness, Fire Department, 

Bioenvironmental Engineering, Medical Readiness, Antiterrorism Officer, 

etc.) need to pre-plan the installation SIP protocol for likely scenarios 

identified during the various vulnerability surveys conducted for both on- 

and off-installation.   

• Planners at a minimum should identify high value targets and shutdown 

the HVAC systems until the initial assessment of release has been 

conducted.  The results above have shown that under most scenarios, a 

HVAC shutdown after 30 minutes is too late.  In all likelihood after the 

initial assessment is completed, the ventilation system can be restarted, 

building flushed, and normal facility operations resumed.  

• A suite of point source detection meters for concerned CBRN agents could 

be used in conjunction with SIP procedures to shutdown high value 

facility HVAC systems immediately upon release of hazardous materials. 
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• At the installation level, a multizonal indoor air quality software package 

should be used to optimize the shelter location within a facility to 

maximize the protection against a particular CBRN threat.  Ideally, this 

step should be conducted during the planning phase of a new facility or 

during an upgrade to a current facility’s HVAC system.  

 

Rules of Thumb 
 

 The following general rules of thumb than can be used to speed the process of 

making a decision and are listed in the table below.  It should be noted that these are not 

specific to any one location or scenarios.  These generalizations were developed by 

keeping the other variables constant and changing only the individual variable. 

 
Table 8-Table of General Rules of Transport 

Variable Response 

Double Wind Speed 
Half the Peak Concentration 
Half the Appearance Time 

Half the Mixing Factor Double the Peak Concentration 

Unstable to Stable Atmospheric Conditions Increase Peak Concentration by factor of 4 

Double the Distance Downwind Decrease Peak Concentration by factor of 3 

Half the ACH Rate Decrease Peak Concentration by factor of 1.5 

  

In the event that a building has been evacuated and determining to determine the 

amount of time required before personnel are permitted to return to that building is 

desired, the equation below can be used to determine the number of air changes required: 
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Equation 25-Required Number of Air Changes 

 

Where  

 

 

 

 

When the air change rate for a particular building is unknown, assume the rate to be 

between 0.1 to 0.5 ACH.  The values are low but within the ranges identified in the 

literature review, and will be more conservative in that they require longer dilution times.  

This assumption helps compensate for the fact that due to mixing of the air within the 

building, 100% of that volume of air will not be refreshed during that timeframe.  A 

residential home will take about six hours to exchange 95% of the inside air with outside 

air with a 0.5 ACH. [50] 

  Assuming perfect mixing, the generalized indoor concentration represented as the 

percentage of the peak outdoor concentration related to SIP strategy is listed below.  The 

values are calculated using stability class F, wind speed of 1.5 mps, ventilation rate of 2.0 

ACH, and 1-km downwind.  These generalizations may change for different conditions. 
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Table 9- Table of General Rules of SIP Strategies 

Maximum Indoor Concentration (% Outdoor Peak Concentration) 

 SIP  Strategy 

Release Condition No HVAC Shutoff 1-min Delay 30-min Delay 

Short-term (<1-min) ≈ 50 ≈ 4 ≈ 50 

Short-term (<10-min) ≈ 54 ≈ 3 ≈ 54 

Medium-term 
(<30-min) 

≈ 78 ≈ 5 ≈ 55 

Long-term (<60-min) ≈ 134 ≈ 9 ≈ 57 

 

Future Projects 
  

 The consequences to the indoor exposure assessments associated with the delay of 

enacting SIP strategies and re-instituting full HVAC operations to normal as quickly as 

possible to further reduce exposures needs to be studied.  The delay of restarting the 

HVAC not only has implications on health, but also has a cost or degradation to the 

mission.  What part of the service do those individuals provide and what does it cost the 

Air Force in not being able to provide? 

 The consequences to the indoor exposure assessments associated with the delay of 

enacting SIP strategies with aerosol transport needs to be studied to provide guidance to 

the BE career field.  Aerosol transport can be highly dependent on environmental 

conditions, and is not very well understood at installation level.  A review of dispersion 

modeling and application to dispersion of particles has been conducted.  [15].   
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Conclusion 

Combining outdoor dispersion models with indoor exposure models is an 

excellent way to evaluate the effectiveness of SIP on an Air Force installation by 

estimating indoor airborne exposures to test the consequences associated with the delay 

of implementation of SIP procedures. 

It is important that the decision to shelter-in-place be made immediately in order 

to reduce the exposure.  Given that it takes on average 35 minutes to construct a shelter, 

the results in this thesis have indicated that a delay greater than one minute can 

significantly increase the exposure resulting in additional casualties presenting at the 

local medical treatment facility.  

It is imperative that emergency planners pre-plan the installation SIP protocol for 

likely scenarios identified during the various vulnerability surveys conducted for both on- 

and off-installation.   

The tools used in this thesis can allow the base level BE personnel to numerically 

solve and evaluate the effectiveness of their SIP decisions in support of health hazard 

assessments. 
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Appendix A.  Commercial Indoor Exposure Model Derivation 
 

This appendix describes the complete derivation of the simple box model 

representing the building and heating, ventilation, and air conditioning (HVAC) system 

of a commercial building. 

Mass Balance on Commercial Building 

 

 

Mass Differential on Building 

 

 

where 
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Mass Balance on Supply Air 

 

Mass Balance on Return Air 

 

where 

 

 

 

 

 

 

 
Complete Differential Mass Balance on Building 

 

  The differential equation is rearranged in the form below to resemble the general 

form of partial differential equations. 
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General form and solution for a partial differential is listed below: 

General Form and Solution for Partial Differential Equation 

 

 

Applying the general solution for a partial differential equation takes the form shown 
below.  
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Plugging the Boundary Conditions (at t=0, CB(t) = Co) to the above solution, the 

constant can be solved for.  

 

 

 

 
General Solution to Building Concentration 

 

 

WMR Model for Building Concentration 
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Appendix B.  Residential Indoor Exposure Model Derivation 
 

This appendix describes the complete derivation of the simple box model 

representing the building of a residential building. 

 

Mass Balance on Residential Building 

 

 
Mass Differential on Residential Building 

 

 

where 

 

 

 

 

 

 

 

 

 

The mass balances for infiltration and exfiltration then substituted into a derived 

mass balance for the building. 
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Mass Balance on Infiltration 

 

The differential mass balance on the building then resembles the equation below. 

Complete Differential Mass Balance on Building 

 

  The differential equation is rearranged in the form below to resemble the general 

form of partial differential equations. 

 

 

 

 

 

General form and solution for a partial differential is listed below: 

 

 

Applying the general solution for a partial differential equation takes the form shown 
below.  
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Plugging the Boundary Conditions (at t=0, CB(t) = Co) to the above solution, the 

constant can be solved for.  

 

 

 

 
General Solution to Building Concentration 

 

 

 

WMR Model for Building Concentration 
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Appendix C.  Gaussian Plume Models 
 

There are three types of interactions between the diffusing agent and the surface: 

1) Total reflection, 2) Total absorption, and 3) Partial absorption. [11] 

For total reflection at z=0, the earth does not absorb the agent, but rather reflects 

it.  Chlorine gas would be an example where the surface would not absorb the agent. 

 

Equation 26-Gaussian puff formula (Total Reflection) 

 

 

Equation 27-Gaussian puff formula (Total Absorption) 

 

 

Equation 28-Gaussian plume formula (Total Reflection) 

 

 

Equation 29-Gaussian plume formula (Total Absorption) 
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Appendix D.  ALOHA Chlorine Incident Results 
 
SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 0.32 (sheltered double storied) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 3 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: D 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 200 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 200 pounds/min 
   Total Amount Released: 2,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
THREAT ZONE:  
   Model Run: Heavy Gas  
   Red   : 1179 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 2.3 miles --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 4.6 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 567 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 1.1 miles --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 2.5 miles --- (0.5 ppm = AEGL-1(60 min)) 
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THREAT AT POINT:  
   Concentration Estimates at the point: 
   Downwind: 1000 meters                  Off Centerline: 0 meters 
   Max Concentration: 
      Outdoor: 23 ppm 
      Indoor:  1.19 ppm 
 

 
 
 

 

 

Figure 18-ALOHA Chlorine Concentration at Point (#1, 1km, 0.32 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2.0 (sheltered double storied) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 3 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: D 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 200 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 200 pounds/min 
   Total Amount Released: 2,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
THREAT ZONE:  
   Model Run: Heavy Gas  
   Red   : 1179 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 2.3 miles --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 4.6 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 567 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 1.1 miles --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 2.5 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1000 meters                  Off Centerline: 0 meters 
   Max Concentration: 
      Outdoor: 23 ppm 
      Indoor:  6.29 ppm 
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Figure 19-ALOHA Chlorine Concentration at Point (#1, 1km,, 2 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 0.32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -34.6° C 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 200 pounds/sec          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 5,440 kilograms/min 
   Total Amount Released: 54,431 kilograms 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE:  
   Model Run: Heavy Gas  
   Red   : 7.2 kilometers --- (20 ppm = AEGL-3(60 min)) 
   Orange: greater than 10 kilometers --- (2 ppm = AEGL-2(60 min)) 
   Yellow: greater than 10 kilometers --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 715 ppm 
      Indoor:  36.6 ppm 
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Figure 20- ALOHA Chlorine Concentration at Point (#2, 1km, 0.32 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm    
  AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -34.6° C 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 200 pounds/sec          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 5,440 kilograms/min 
   Total Amount Released: 54,431 kilograms 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE:  
   Model Run: Heavy Gas  
   Red   : 7.2 kilometers --- (20 ppm = AEGL-3(60 min)) 
   Orange: greater than 10 kilometers --- (2 ppm = AEGL-2(60 min)) 
   Yellow: greater than 10 kilometers --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 715 ppm 
      Indoor:  196 ppm 
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Figure 21- ALOHA Chlorine Concentration at Point (#2, 1km, 2 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 0.32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 200 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 200 pounds/min 
   Total Amount Released: 2,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 502 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 1626 yards --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 1.8 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 4.33 ppm 
      Indoor:  0.223 ppm 
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Figure 22- ALOHA Chlorine Concentration at Point (#3, 1km, 0.32 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 200 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 200 pounds/min 
   Total Amount Released: 2,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 502 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 1626 yards --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 1.8 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 4.33 ppm 
      Indoor:  1.18 ppm 
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Figure 23- ALOHA Chlorine Concentration at Point (#3, 1km, 2 ACH) 
 

 

 

Figure 24-Model Chlorine Concentration at Point (#3, 1 km)  
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009  0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 200 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 200 pounds/min 
   Total Amount Released: 2,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE:  
   Model Run: Heavy Gas  
   Red   : 1109 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 2.1 miles --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 4.1 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 20.6 ppm 
      Indoor:  5.64 ppm 
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Figure 25- ALOHA Chlorine Concentration at Point (#4, 1km, 2 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 0.32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 200 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 200 pounds/min 
   Total Amount Released: 2,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE:  
   Model Run: Heavy Gas  
   Red   : 1109 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 2.1 miles --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 4.1 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 20.6 ppm 
      Indoor:  1.05 ppm 
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Figure 26- ALOHA Chlorine Concentration at Point (#4, 1km, 0.32 ACH) 
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SITE DATA: 

   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: .32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
SOURCE STRENGTH: 
   Direct Source: 20 pounds/min           Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 20 pounds/min 
   Total Amount Released: 200 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 158 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 502 yards --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 1016 yards --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 0.433 ppm 
      Indoor:  0.0223 ppm 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: .32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 

SOURCE STRENGTH: 
   Direct Source: 100 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 100 pounds/min 
   Total Amount Released: 1,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 354 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 1139 yards --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 1.3 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 2.17 ppm 
      Indoor:  0.111 ppm 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: .32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
SOURCE STRENGTH: 
   Direct Source: 200 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 200 pounds/min 
   Total Amount Released: 2,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 502 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 1626 yards --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 1.8 miles --- (0.5 ppm = AEGL-1(60 min)) 
  
THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 4.33 ppm 
      Indoor:  0.223 ppm 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: .32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 

SOURCE STRENGTH: 
   Direct Source: 300 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 300 pounds/min 
   Total Amount Released: 3,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 617 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 1.1 miles --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 2.1 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 6.5 ppm 
      Indoor:  0.334 ppm 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: .32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: CHLORINE                Molecular Weight: 70.91 g/mol 
   AEGL-1(60 min): 0.5 ppm   AEGL-2(60 min): 2 ppm   AEGL-3(60 min): 20 ppm 
   IDLH: 10 ppm 
   Carcinogenic risk - see CAMEO 
   Ambient Boiling Point: -30.3° F 
   Vapor Pressure at Ambient Temperature: greater than 1 atm 
   Ambient Saturation Concentration: 1,000,000 ppm or 100.0% 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
SOURCE STRENGTH: 
   Direct Source: 400 pounds/min          Source Height: 0 
   Release Duration: 10 minutes 
   Release Rate: 400 pounds/min 
   Total Amount Released: 4,000 pounds 
   Note: This chemical may flash boil and/or result in two phase flow. 
 
 THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 714 yards --- (20 ppm = AEGL-3(60 min)) 
   Orange: 1.3 miles --- (2 ppm = AEGL-2(60 min)) 
   Yellow: 2.4 miles --- (0.5 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 8.66 ppm 
      Indoor:  0.445 ppm 
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Appendix E.  ALOHA Sarin Incident Results 
 
SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 0.32 (sheltered double storied) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm   
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 147.2° C 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 3 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: D 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 1000 pounds             Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 7.56 kilograms/sec 
   Total Amount Released: 454 kilograms 
 
 THREAT ZONE:  
   Model Run: Gaussian 
   Red   : 9.1 kilometers --- (0.022 ppm = AEGL-3(60 min)) 
   Orange: greater than 10 km --- (0.006 ppm = AEGL-2(60 min)) 
   Yellow: greater than 10 km --- (4.8e-04 ppm = AEGL-1(60 min)) 
 
THREAT AT POINT:  
   Concentration Estimates at the point: 
   Downwind: 1000 meters                  Off Centerline: 0 meters 
   Max Concentration: 
      Outdoor: 8.97 ppm 
      Indoor:  0.0789 ppm 
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Figure 27-ALOHA Sarin Concentration at Point (#1, 1 km, 0.32 ACH) 
 
 
  



96 

 

SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2.0 (sheltered double storied) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm   
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 147.2° C 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 3 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: D 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 1000 pounds             Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 7.56 kilograms/sec 
   Total Amount Released: 454 kilograms 
 
 THREAT ZONE:  
   Model Run: Gaussian 
   Red   : 9.1 kilometers --- (0.022 ppm = AEGL-3(60 min)) 
   Orange: greater than 10 km --- (0.006 ppm = AEGL-2(60 min)) 
   Yellow: greater than 10 km --- (4.8e-04 ppm = AEGL-1(60 min)) 
 
 
THREAT AT POINT: (2 ACH) 
   Concentration Estimates at the point: 
   Downwind: 1000 meters                  Off Centerline: 0 meters 
   Max Concentration: 
      Outdoor: 8.97 ppm 
      Indoor:  0.459 ppm 
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Figure 28-ALOHA Sarin Concentration at Point (#1, 1 km, 2 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 0.32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm    
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 1000 pounds/min         Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 16.7 pounds/sec 
   Total Amount Released: 1,000 pounds 
 
 THREAT ZONE:  
   Model Run: Gaussian 
   Red   : 3.6 miles --- (0.022 ppm = AEGL-3(60 min)) 
   Orange: 5.5 miles --- (0.006 ppm = AEGL-2(60 min)) 
   Yellow: greater than 6 miles --- (4.8e-04 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 4.89 ppm 
      Indoor:  0.0575 ppm 
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Figure 29- ALOHA Sarin Concentration at Point (#2, 1 km, 0.32 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm    
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: urban or forest      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 1000 pounds/min         Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 16.7 pounds/sec 
   Total Amount Released: 1,000 pounds 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 4.89 ppm 
      Indoor:  0.334 ppm 
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Figure 30- ALOHA Sarin Concentration at Point (#2, 1 km, 2.0 ACH) 
 

 

Figure 31- Model Sarin Concentration at Point (#2, 1 km) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 0.32 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm   
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 1000 pounds/min         Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 16.7 pounds/sec 
   Total Amount Released: 1,000 pounds 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 4.89 ppm 
      Indoor:  0.0575 ppm 
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Figure 32- ALOHA Sarin Concentration at Point (#3, 1 km, 0.32 ACH) 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
 CHEMICAL DATA: 
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm   AEGL-3(60 min): 
0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: 1000 pounds/min         Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 16.7 pounds/sec 
   Total Amount Released: 1,000 pounds 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometer                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 4.89 ppm 
      Indoor:  0.334 ppm 
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Figure 33- ALOHA Sarin Concentration at Point (#3, 1 km, 2 ACH) 
 

 

 

Figure 34- Model Sarin Concentration at Point (#3, 1 km) 
 



106 

 

SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
CHEMICAL DATA:  
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm    
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
 SOURCE STRENGTH: 
   Direct Source: .1 tons/min             Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 3.33 pounds/sec 
   Total Amount Released: 200 pounds 
 
 THREAT ZONE: (GAUSSIAN SELECTED) 
   Model Run: Gaussian 
   Red   : 2.1 miles --- (0.022 ppm = AEGL-3(60 min)) 
   Orange: 3.2 miles --- (0.006 ppm = AEGL-2(60 min)) 
   Yellow: greater than 6 miles --- (4.8e-04 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 0.978 ppm 
      Indoor:  0.0115 ppm 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
CHEMICAL DATA:  
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm    
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 

SOURCE STRENGTH: 
   Direct Source: .5 tons/min             Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 16.7 pounds/sec 
   Total Amount Released: 1,000 pounds 
 
 THREAT ZONE:  
   Model Run: Gaussian 
   Red   : 3.6 miles --- (0.022 ppm = AEGL-3(60 min)) 
   Orange: 5.5 miles --- (0.006 ppm = AEGL-2(60 min)) 
   Yellow: greater than 6 miles --- (4.8e-04 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 4.89 ppm 
      Indoor:  0.0575 ppm 



108 

 

SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
CHEMICAL DATA:  
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm    
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 
SOURCE STRENGTH: 
   Direct Source: 1 tons/min              Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 33.3 pounds/sec 
   Total Amount Released: 2,000 pounds 
 
 THREAT ZONE:  
   Model Run: Gaussian 
   Red   : 4.5 miles --- (0.022 ppm = AEGL-3(60 min)) 
   Orange: greater than 6 miles --- (0.006 ppm = AEGL-2(60 min)) 
   Yellow: greater than 6 miles --- (4.8e-04 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 9.78 ppm 
      Indoor:  0.115 ppm 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
CHEMICAL DATA:  
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm    
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 

SOURCE STRENGTH: 
   Direct Source: 1.5 tons/min            Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 50 pounds/sec 
   Total Amount Released: 3,000 pounds 
 
 THREAT ZONE:  
   Model Run: Gaussian 
   Red   : 5.2 miles --- (0.022 ppm = AEGL-3(60 min)) 
   Orange: greater than 6 miles --- (0.006 ppm = AEGL-2(60 min)) 
   Yellow: greater than 6 miles --- (4.8e-04 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 14.7 ppm 
      Indoor:  0.172 ppm 
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SITE DATA: 
   Location: DAYTON, OHIO 
   Building Air Exchanges Per Hour: 2 (user specified) 
   Time: February 23, 2009 0800 hours EST (user specified) 
 
CHEMICAL DATA:  
   Chemical Name: SARIN                   Molecular Weight: 140.11 g/mol 
   AEGL-1(60 min): 4.8e-04 ppm   AEGL-2(60 min): 0.006 ppm    
   AEGL-3(60 min): 0.022 ppm 
   Normal Boiling Point: 297.0° F 
   Note: Not enough chemical data to use Heavy Gas option 
 
 ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)  
   Wind: 3 meters/second from 180° true at 10 meters 
   Ground Roughness: 100 centimeters      Cloud Cover: 5 tenths 
   Air Temperature: 70° F                 Stability Class: C 
   No Inversion Height                    Relative Humidity: 50% 
 

SOURCE STRENGTH: 
   Direct Source: 2 tons/min              Source Height: 0 
   Release Duration: 1 minute 
   Release Rate: 66.7 pounds/sec 
   Total Amount Released: 4,000 pounds 
 
 THREAT ZONE:  
   Model Run: Gaussian 
   Red   : 5.7 miles --- (0.022 ppm = AEGL-3(60 min)) 
   Orange: greater than 6 miles --- (0.006 ppm = AEGL-2(60 min)) 
   Yellow: greater than 6 miles --- (4.8e-04 ppm = AEGL-1(60 min)) 
 
 THREAT AT POINT: 
   Concentration Estimates at the point: 
   Downwind: 1 kilometers                 Off Centerline: 0 kilometers 
   Max Concentration: 
      Outdoor: 19.6 ppm 
      Indoor:  0.23 ppm 
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31 Chlorine F 1 3 0 1000 0 2 17 30 2 0.1 1 inf 1778 18 81.9 34.8 930
32 Chlorine F 1 3 0 1000 0 2 17 30 2 0.1 1 1 1778 18 4.89 36 56.9
33 Chlorine F 1 3 0 1000 0 2 17 30 2 0.1 1 30 1778 18 71 33.6 894.5
34 Chlorine F 1 3 0 1000 0 2 90 240 2 0.1 1 inf 1176 28.2 249 240 794
35 Chlorine F 1 3 0 1000 0 2 90 240 2 0.1 1 1 1176 28.2 32.8 247 47
36 Chlorine F 1 3 0 1000 0 2 90 240 2 0.1 1 30 1176 28.2 79.72 244.4 601.3
37 Chlorine F 1 3 0 1000 0 2 90 240 2 0.1 1 60 1176 28.2 133.9 60 794.3
38 Chlorine F 1 3 0 1000 0 2 1 10 2 0.1 0.4 inf 271.3 10.5 15.14 22 31.4
39 Sarin A 1 1.5 0 100 0 2 0.075 1 0.5 0.1 1 inf 514.15 1.6 0.5 3 2.39
40 Sarin A 1 1.5 0 100 0 2 0.075 1 2 0.1 1 inf 514.15 1.6 1.75 3 7.58
41 Sarin A 1 1.5 0 1000 0 2 0.075 1 0.5 0.1 1 inf 0.0956 11.6 9.1 39.85 0.00658
42 Sarin A 1 1.5 0 1000 0 2 0.075 1 2 0.1 1 inf 0.0956 11.6 29.31 35.4 0.0213
43 Sarin A 1 1.5 0 3000 0 2 0.075 1 0.5 0.1 1 inf 2.19E-04 33.8 59.46 270 2.48E-05
44 Sarin A 1 1.5 0 3000 0 2 0.075 1 2 0.1 1 inf 2.19E-04 33.8 138.2 199 8.00E-05
45 Sarin B 1 1.5 0 1000 0 2 0.075 1 2 0.1 1 inf 1.71 11.6 10.99 19.8 0.14
46 Sarin C 1 1.5 0 1000 0 2 0.075 1 2 0.1 1 inf 6.39 11.6 7.99 17.7 0.37
47 Sarin D 1 1.5 0 1000 0 2 0.075 1 2 0.1 1 inf 18.02 11.6 8.64 18.1 1.15
48 Sarin E 1 1.5 0 1000 0 2 0.075 1 2 0.1 1 inf 22.7 11.6 12.88 21 2.19
49 Sarin F 1 1.5 0 1000 0 2 0.075 1 2 0.1 1 inf 25.9 11.6 22.97 28.7 4.56
50 Chlorine F 1 3 0 1000 0 2 1 10 2 0.1 1 30 271.3 10.5 34.9 30 71.9
51 Sarin F 1 1.5 0 1000 0 2 0.075 1 2 0.1 1 1 25.9 11.6 3.55 25.8 0.753
52 Sarin F 1 1.5 0 1000 0 2 0.075 1 2 0.1 1 30 25.9 11.6 51 20.4 10.5
53 Chlorine F 1 3 0 1000 0 2 17 60 2 0.1 1 inf 889.04 27 139 62 600
54 Chlorine F 1 3 0 1000 0 2 17 60 2 0.1 1 1 889.04 27 9.48 65.4 35.5
55 Chlorine F 1 3 0 1000 0 2 17 60 2 0.1 1 30 889.04 27 72.65 62 454.3
56 Chlorine C 1 3 0 1000 0 2 0.1 10 0 0.32 1 inf 2.52 7.8 5.24 16.2 0.098
57 Chlorine C 1 3 0 1000 0 2 0.5 10 0 0.32 1 inf 12.6 7.8 5.24 16.2 0.488
58 Chlorine C 1 3 0 1000 0 2 1 10 0 0.32 1 inf 25.3 7.8 5.22 16.2 0.976
59 Chlorine C 1 3 0 1000 0 2 1.5 10 0 0.32 1 inf 37.89 7.8 5.12 16.2 1.47
60 Chlorine C 1 3 0 1000 0 2 2 10 0 0.32 1 inf 50.5 7.8 5.23 16.2 1.95
61 Sarin C 1 3 0 1000 0 2 0.1 1 0 0.32 1 inf 8.33 5.88 1.58 8.4 0.105
62 Sarin C 1 3 0 1000 0 2 0.5 1 0 0.32 1 inf 41.68 5.88 1.58 8.4 0.527
63 Sarin C 1 3 0 1000 0 2 1 1 0 0.32 1 inf 83.4 5.88 1.58 8.4 1.05
64 Sarin C 1 3 0 1000 0 2 1.5 1 0 0.32 1 inf 125.1 5.88 1.58 8.4 1.58
65 Sarin C 1 3 0 1000 0 2 2 1 0 0.32 1 inf 161.8 5.88 1.58 8.4 2.11
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Appendix F.  Summary of Results 
 

 
 

 
 

 
 
 
 
 

Trial Chemical Stability Roughness Wind Velocity H x (m) y (m) z (m)
Quantity 

(ton) Tr (min) ACH (h-1)
Infiltration 

(ACH) Mixing
Implementation 

Delay (min)

Peak Outside 
Concentration 

(mg/m3)
Time 
(min)

% peak of 
Outside 

Peak
Time 
(min) 60 min TWA

1 Chlorine A 1 1.5 0 100 0 2 0.075 10 0.5 0.1 1 inf 74.85 4 9.73 12 5.93
2 Chlorine A 1 1.5 0 100 0 2 0.075 10 1 0.1 1 inf 74.85 4 17.54 11.75 10.09
3 Chlorine A 1 1.5 0 100 0 2 0.075 10 2 0.1 1 inf 74.85 4 32.42 11.5 16.89
4 Chlorine A 1 1.5 0 100 0 2 0.075 10 0.5 0.1 1 1 74.85 4 1.71 12.3 1.11
5 Chlorine A 1 1.5 0 100 0 2 0.075 10 1 0.1 1 1 74.85 4 1.77 12.2 1.15
6 Chlorine A 1 1.5 0 100 0 2 0.075 10 2 0.1 1 1 74.85 4 1.9 12.2 1.24
7 Chlorine A 1 1.5 0 100 0 2 0.075 10 0.5 0.1 1 30 74.85 4 9.73 12.1 6.07
8 Chlorine A 1 1.5 0 100 0 2 0.075 10 1 0.1 1 30 74.85 4 17.54 12 10.55
9 Chlorine A 1 1.5 0 100 0 2 0.075 10 2 0.1 1 30 74.85 4 32.42 11.8 18.14

10 Chlorine A 1 3 0 100 0 2 0.075 10 0.5 0.1 1 inf 32.43 1.5 9.75 10.7 2.6
11 Chlorine A 1 3 0 100 0 2 0.075 10 1 0.1 1 inf 32.43 1.5 17.61 10.7 4.22
12 Chlorine A 1 3 0 100 0 2 0.075 10 2 0.1 1 inf 32.43 1.5 32.6 10.7 7.29
13 Chlorine A 1 3 0 100 0 2 0.075 10 0.5 0.1 1 1 32.43 4 2.02 10.7 0.584
14 Chlorine A 1 3 0 100 0 2 0.075 10 1 0.1 1 1 32.43 4 2.39 10.9 0.698
15 Chlorine A 1 3 0 100 0 2 0.075 10 2 0.1 1 1 32.43 4 3.13 10.9 0.927
16 Chlorine D 1 1.5 0 100 0 2 0.075 10 0.5 0.1 1 inf 566.4 2.7 9.75 11.6 45.05
17 Chlorine D 1 1.5 0 100 0 2 0.075 10 2 0.1 1 inf 566.4 2.7 32.55 11.4 126.6
18 Chlorine D 1 3 0 100 0 2 0.075 10 2 0.1 1 inf 283.21 1.35 32.65 10.7 63.73
19 Chlorine D 1 3 0 100 0 2 0.075 10 2 0.1 1 1 283.21 1.35 3.13 10.9 8.1
20 Chlorine D 1 1.5 0 1000 0 2 0.075 10 0.5 0.1 1 inf 11 16.1 10.03 25.8 0.7663
21 Chlorine D 1 1.5 0 1000 0 2 0.075 10 2 0.1 1 inf 11 16.1 32.55 24.1 2.235
22 Chlorine D 1 3 0 1000 0 2 0.075 10 2 0.1 1 inf 5.78 10.5 31.84 17 1.2182
23 Chlorine D 1 3 0 1000 0 2 1 10 2 0.1 1 inf 77.16 10.5 31.84 17 16.24
24 Chlorine D 1 3 0 1000 0 2 1 10 2 0.1 1 1 77.16 10.5 1.64 18 1.018
25 Chlorine E 1 3 0 1000 0 2 1 10 0.5 0.1 1 inf 149.5 10.5 9.67 18.7 10.87
26 Chlorine E 1 3 0 1000 0 2 1 10 2 0.1 1 inf 149.5 10.5 31.62 17.8 31.08
27 Chlorine E 1 3 0 1000 0 2 1 10 2 0.1 1 1 149.5 10.5 1.66 19.7 1.96
28 Chlorine E 1 3 0 3000 0 2 1 10 0.5 0.1 1 inf 16.8 21.7 15.03 36.6 1.6
29 Chlorine F 1 3 0 1000 0 2 1 10 2 0.1 1 inf 271.3 10.5 34.9 29.4 65.39
30 Chlorine F 1 3 0 1000 0 2 1 10 2 0.1 1 1 271.3 10.5 1.97 23.3 1.77
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Appendix G.  Excel Screen Shots 
 

 Since the goal was to provide a tool to base level BE personnel, a Microsoft Office 

Excel® 2007 spreadsheet was used to evaluate the SIP decisions. The Excel® spreadsheet 

requires information to be entered into the area of atmospheric information, building 

information, and shelter-in-place strategy.  Information required to calculate the outdoor 

concentration includes the stability class, roughness, mean wind velocity, mixing height, 

mass of release, time of release, downwind coordinates.   The required information is 

marked in yellow in Figure 35 below. The vertical, horizontal, and along axis dispersion 

coefficients will calculate automatically based on imputed information.   

 

 
Figure 35-Atmospheric Input  

  

Atmospheric Information

Stability C
Roughness 1 m

ū = 3 m/s Z = 10 m p = 0.2

h = 0
M = 2 ton 1814369480 mg

q = 30239491.33 mg/sec
tr = 1 min

60 sec

x (m)

1000 m
σ x 211.1844329 m
σ y 103.800 m
σ z 61.140 m
zr 30.57 m
zc 10.3938 m
y= 0 m
z = 2 m
Cg (mg/m3) = 505.2987281
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When inputting building information, users must first decide where or not the 

building is residential or commercial and how calculate the air exchange rates.  The air 

exchange rates can be calculated by the design flow rates or specify the air exchange rates.  

The user must then choose to calculate the infiltration rates or specify by air exchange 

rates. The required information is marked in yellow in Figure 36 below. 

 

 

Figure 36-Building Information Input 

Building Information

Type of Building R
How to Calculate Flows A

A 2500 ft2 ACH  = 2

Vbuilding 25000 ft3 707.9212 m3

Used Values
QIntake 0.18 cfm/ft2

450 cfm 0.212376 m3/sec cfm m3/sec 0 m3/sec
Qintake/QSupply 0.19

QSupply 2368.421053 cfm 1.11777 m3/sec cfm m3/sec 0 m3/sec

Qsupply/Qreturn 1.14

Qreturn 2077.562327 cfm 0.9805 m3/sec cfm m3/sec 0 m3/sec

QExhaust 159.1412742 cfm 0.075106 m3/sec cfm m3/sec 0 m3/sec

How to Calculate Infiltration A ACH = 0.32
Driving Force? W

Used Values
ELA 0.01 in2/ft2
Free Area 25 in2 0.173611 ft2
Cv 0.55
v 9.84252 ft/sec
Toutside 60 oF 520.67 R
Tinside 70 oF 530.67 R
T 70 oF 530.67 R
CD 0.425

∆HNPL 3 ft

Qinfiltration 82.70450833 cfm 0.039032 m3/sec 133.3333 cfm 0.062926 m3/sec 0.062926 m3/sec
Qexfiltration 82.70450833 cfm 0.039032 m3/sec 133.3333 cfm 0.062926 m3/sec 0.062926 m3/sec

m 1
k 0 m3/h 0 m3/sec
Co 0

Design Criteria ACH

Design Criteria ACH
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 The final section of input involves choosing the shelter-in-place strategy, which 

involves inputting the delay time in shutting down the HVAC system. The required 

information is marked in yellow in Figure 37 below. The Excel® spreadsheet will calculate 

and plot both the indoor and outdoor concentrations for assessment.   

 

 

Figure 37-SIP Strategy Input

Shelter-In-Place Strategy

Taking Action of SIP? Y

HVAC Shutoff? N

HVAC Termination Delay 30 min
1800 sec
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